## Quiz 18

## April 14, 2017

Show all work and circle your final answer.

- 1. (4 points) Write parametric equations in terms of t representing the curve  $y = x^2 - 7$  from  $-1 \le x \le 2$  (include bounds on t). x = t,  $y = t^2 - 7$ ,  $-1 \le t \le 2$
- 2. (4 points) Write parametric equations for a circle centered at (1, -3) with radius 2 (include bounds on t).

(1, -3) with radius 2 (include bounds on t).

$$(x-1)^{2} + (y+3)^{2} = 4$$

$$\frac{x-1}{2} = \cos t \rightarrow |x| = 2\cos t + 1$$

$$(\frac{x-1}{2})^{2} + (\frac{y+3}{2})^{2} = |y+3| = \sin t \rightarrow |y| = 2\sin t - 3$$

other possibilities:  $|x=2\sin t+1|, y=2\cos t-3|, 0 \le t \le 2\pi$ 

(4 points) Find the equation of the tangent line to the curve

other possibilities: 
$$x = 2\sin t + 1$$
,  $y = 2\cos t - 3$ ,  $0 \le t \le 2\pi$   $x = 2\cos 2t + 1$ ,  $y = 2\sin 2t - 3$  (4 points) Find the equation of the tangent line to the curve

3. (4 points) Find the equation of the tangent line to the curve  $x = 2t^2$ ,  $y = \sqrt{t} + t$  at t = 4.

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1/2 t^{-1/2} + 1}{4t}$$

$$\frac{dy}{dx} \Big|_{t=4} = \frac{\frac{1}{4} + 1}{16} = \frac{5}{64}$$

$$y(4) = \sqrt{4} + 4 = 6$$

$$x(4) = 2(4)^2 = 32$$

$$y(4) = \sqrt{4} + 4 = 6$$

4. (4 points) Write an integral representing the total distance traveled by a particle whose position is given by  $x = 3\sin t$ , y = $4 \arctan t$  for  $0 \le t \le 1$ . Do not evaluate the integral.

$$L = \int_0^1 \sqrt{\frac{dx}{dt}} y^2 + \left(\frac{dy}{dt}\right)^2 dt = \int_0^1 \sqrt{\left(3\cos t\right)^2 + \left(\frac{4}{1+t^2}\right)^2} dt$$

5. (4 points) The arclength of a curve C defined by parametric equations x = f(t) and y = g(t),  $a \le t \le b$ , is NOT always equal to the distance traveled by a particle with position (f(t), g(t)) between t = a and t = b. Give an example of when this is not true. (You may draw a picture, explain in words, give a specific function, etc.)

In this case, the particle travels the curve twice between t=0 and t=4 \pi, so the total distance travelled is twice the circumference (arclength) of the circle.